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Main claim —

Letter | Published: 20 January 2000

A synthetic oscillatory network of
transcriptional regulators

Michael B. Elowitz - & Stanislas Leibler

Nature 403, 335-338(2000) | Cite this article
10k Accesses | 2687 Citations | 90 Altmetric | Metrics

Abstract

Networks of interacting biomolecules carry out many essential functions
in living cells!, but the ‘design principles’ underlying the functioning of
such intracellular networks remain poorly understood, despite intensive
efforts including quantitative analysis of relatively simple systems?. Here
we present a complementary approach to this problem: the design and
construction of a synthetic network to implement a particular function.
We used three transcriptional repressor systems that are not part of any
natural biological clock®*° to build an oscillating network, termed the
repressilator, in Escherichia coli. The network periodically induces the
synthesis of green fluorescent protein as a readout of its state in
individual cells. The resulting oscillations, with typical periods of hours,
are slower than the cell-division cycle, so the state of the oscillator has to
be transmitted from generation to generation. This artificial clock
displays noisy behaviour, possibly because of stochastic fluctuations of
its components. Such ‘rational network design’ may lead both to the
engineering of new cellular behaviours and to an improved
understanding of naturally occurring networks.



Main Evidence
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How does this genetic system work!?

(oscillator is made of four proteins encoded by four open reading
frames; three of the proteins regulate transcription w/in the system)

a Repressilator Reporter
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Regulation of gene expression via repressors

(for a gene to be expressed an RNA polymerase molecule must
bind DNA at a specific promoter to start transcription; repressors
block binding at specific operator sites and inhibit transcription)

OPERATOR

YOUR FAVORITE GENE

PROMOTER

(Repressors most-simply work by the principle of two objects cannot occupy the same space at the
same time; if a repressor protein is bound to operator sequences interspersed within a promoter, then
the RNA polymerase cannot bind the promoter. Note, activator proteins can turn on gene expression

by binding to operator sites next to promoters, helping the RNA polymerase to start transcription)



Repressor are proteins that bind DNA

(we can use biomolecule analysis and design tools to analyze and
design DNA binding proteins, as per last class)

: reen
“lambda” “lactose” “tetracycline” S
fluorescent
repressor repressor repressor .
protein
https://www.rcsb.org/3d-view/ | LMB/ | https://www.rcsb.org/3d-view/ | QPI/|

https://www.rcsb.org/3d-view/ | LBG/| https://www.rcsb.org/3d-view/| GFL/I



How does this genetic system work!?

(when one repressor is highly abundant w/in a cell, the expression of the next repressor
will be lowered, and so on. Because an odd number of repressors have been engineered
to form a closed cycle, the system feeds back on itself resulting in an oscillation)
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(what would happen if the system had two or four repressors in a cycle?)



Oscillations via a movie...

(how soon the cells start behaving differently! why?)

https://vimeo.com/291608242




Determination of cell fate selection during phage
lambda infection

Francois St-Pierre? and Drew Endy®-’
Departments of 2Biology and PBiological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Mark Ptashne, Memorial Sloan-Kettering Cancer Center, New York, NY, and approved October 8, 2008 (received for review September 5, 2008)

Bacteriophage lambda infection of Escherichia coli can result in A Variation during lambda infection

distinct cell fate outcomes. For example, some cells lyse whereas Lysogeny

others survive as lysogens. A quantitative biophysical model of

lambda infection supports the hypothesis that spontaneous dif- (&:ﬁ)

ferences in the timing of individual molecular events during

lambda infection leads to variation in the selection of cell fates. \,j A .4.'::
Building from this analysis, the lambda lysis-lysogeny decision =0 "ol _
now serves as a paradigm for how intrinsic molecular noise can Lyss

influence cellular behavior, drive developmental processes, and o ) O \

produce population heterogeneity. Here, we report experimental _ _l

evidence that warrants reconsidering this framework. By using cell
fractioning, plating, and single-cell fluorescent microscopy, we find

A ;‘)rophage

“\

that physical differences among cells present before infection bias B Variation prior to lambda infection
lambda developmental outcomes. Specifically, variation in cell
volume at the time of infection can be used to help predict cell fate: K Lysogeny

a =~2-fold increase in cell volume results in a 4- to 5-fold decrease

in the probability of lysogeny. Other cell fate decisions now (E::Q) > M

thought to be stochastic might also be determined by pre-existing -

variation. . ip'_rophage
Main claim (=) ’ _




Main Evidence
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s this switch digital? Life = |; death = 0?

A
GENETIC
SWITCH - @

Third Edition
Phage Lambda Revisited

MARK PTASHNE

Cold Spring Harbor Laboratory Press; 3rd edition (April 8, 2004)



Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in
Phage A-Infected Escherichia coli Cells

Adam Arkin,*s John Ross' and Harley H. McAdams*

*Department of Developmental Biology and 'Department of Chemistry, Stanford University, Stanford, California 94305

Manuscript received March 5, 1998
Accepted for publication April 30, 1998

ABSTRACT

Fluctuations in rates of gene expression can produce highly erratic time patterns of protein production
in individual cellsand wide diversity in instantaneous protein concentrations across cell populations. When
two independentlyproduced regulatory proteins acting at lowcellular concentrations competitively control
a switch point in a pathway, stochastic variations in their concentrations can produce probabilistic pathway
selection, so that an initially homogeneous cell population partitions into distinct phenotypic subpopula-

tions. Many pathogenic organisms, for example, use this mechanism to randomly switch surface features
to evade host responses. This coupling between moleculardevel fluctuations and macroscopic phenotype

selection is analyzed using the phage A lysis-lysogeny decision circuit as a model system. The fraction of
infected cells selecting the lysogenic pathway at different phage:cell ratios, predicted using a molecular-
level stochastic kinetic model of the genetic regulatorycircuit, is consistent with experimental observations.
The kinetic model of the decision circuit uses the stochastic formulation of chemical kinetics, stochastic
mechanisms of gene expression, and a statisticalthermodynamic model of promoter regulation. Conven-
tional deterministic kineticscannot be used to predict statisticsofregulatorysystemsthat produce probabilis-

tic outcomes. Rather, a stochastic kinetic analysis must be used to predict statistics of regulatory outcomes
for such stochastically regulated systems.

Arkin et al., Genetics. 1998 Aug:149(4):1633-48.


https://www.ncbi.nlm.nih.gov/pubmed/9691025#
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Arkin et al., Genetics. 1998 Aug;149(4):1633-48.


https://www.ncbi.nlm.nih.gov/pubmed/9691025#

Is life (1) or death (0) random!?

(answering this question, in general, matters greatly for bioengineers. why?)
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http://youtu.be/sLkZ9FPH|GM



http://youtu.be/sLkZ9FPHJGM

0 min
http://biodynamics.ucsd.edu/



https://www.ncbi.nim.nih.gov/pubmed/22178928



5,000 cells per biopixel
2.5 million total cells

https://www.ncbi.nim.nih.gov/pubmed/22178928



0 min http://biodynamics.ucsd.edu/



How can we manage how we think about

systems like this? Abstraction! (Week 4)
_ Loupling

Reporter

Oscillator
https://www.ncbi.nlm.nih.gov/pubmed/22178928


http://youtu.be/sLkZ9FPHJGM

How to use tools to analyze natural
systems? Bioinformatics! (VWeek 5)
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